Slideshow 5 technologies that will reshape business and society

Published
  • April 03 2018, 5:51am EDT
6 Images Total

5 technology predictions from IBM Research global labs

Each year, IBM Research showcases some of the biggest breakthroughs coming out of its global labs – five technologies that the firm believes will fundamentally reshape business and society in the next five years. This innovation “5 in 5” list is informed by research taking place at IBM Labs, leading edge work taking place with the company’s clients, and trends it sees in the technology and business landscape. Here are the five trends for this year and the next five years that IBM believes “portend a powerful evolution in computing that will exceed anything we’ve previously seen.”

Nobody likes knockoffs. Crypto-anchors and blockchain will unite against counterfeiters.

Within the next five years, cryptographic anchors -- such as ink dots or tiny computers smaller than a grain of salt -- will be embedded in everyday objects and devices, the firm predicts. “They’ll be used in tandem with blockchain’s distributed ledger technology to ensure an object’s authenticity from its point of origin to when it reaches the hands of the customer. These technologies pave the way for new solutions that tackle food safety, authenticity of manufactured components, genetically modified products, identification of counterfeit objects and provenance of luxury goods.”

Content Continues Below


Hackers gonna hack. Until they encounter lattice cryptography.

IBM is developing encryption methods to keep pace with emerging technologies such as quantum computers, which the firm says will someday be able to break all current encryption protocols. IBM researchers have already developed a post-quantum encryption method, which have been submitted to the U.S. government – called lattice cryptography. “No computer can crack it, not even future quantum computers. With lattice cryptography we can work on a file, or encrypt it, without ever exposing sensitive data to hackers,” the firm says.

Our oceans are dirty. AI-powered robot microscopes may save them.

In five years, small, autonomous AI microscopes, networked in the cloud and deployed around the world, will continually monitor in real time the health of one of Earth's most important and threatened resources: water. “IBM scientists are working on an approach that uses plankton, which are natural, biological sensors of aquatic health,” the firm explains. “AI microscopes can be placed in bodies of water to track plankton movement in 3D, in their natural environment, and use this information to predict their behavior and health. This could help in situations like oil spills and runoff from land-based pollution sources, and to predict threats such as red tides.”

AI bias will explode. But only the unbiased AI will survive.

“Within five years, we will have new solutions to counter a substantial increase in the number of biased AI systems and algorithms,” the firm predicts. “As we work to develop AI systems we can trust, it’s critical to develop and train these systems with data that is fair, interpretable and free of racial, gender, or ideological biases. With this goal in mind, IBM researchers developed a method to reduce the bias that may be present in a training dataset, such that any AI algorithm that later learns from that dataset will perpetuate as little inequity as possible. IBM scientists also devised a way to test AI systems even when the training data is not available.”

Content Continues Below


Today, quantum computing is a researcher’s playground. In five years, it will be mainstream.

“In five years, quantum computing will be used extensively by new categories of professionals and developers to solve problems once considered unsolvable,” IBM says. “Quantum will be ubiquitous in university classrooms, and will even be available, to some degree, at the high school level. IBM Researchers are already achieving major quantum chemistry milestones. They successfully simulated atomic bonding in beryllium hydride (BeH2), the most complex molecule ever simulated by a quantum computer. In the future, quantum computers will continue to address problems with ever increasing complexity, eventually catching up to and surpassing what we can do with classical machines alone.”