Editor's note: Read Part 1 of this blog here.

When I was a statistics student “back in the day,” I learned several important precepts that I can recall as if yesterday. The first was the unbridled joy of working with bell curve-distributed data. Bell curve – normal or Gaussian – distributions not only seemed applicable to any number of measurable traits, they were also quite tractable mathematically. Indeed just two parameters, the mean and variance, described all that needed to be known about a normal distribution.

Register or login for access to this item and much more

All Information Management content is archived after seven days.

Community members receive:
  • All recent and archived articles
  • Conference offers and updates
  • A full menu of enewsletter options
  • Web seminars, white papers, ebooks

Don't have an account? Register for Free Unlimited Access