As I wrote in last week’s blog post, a data warehouse appliance simplifies platform and system resource administration. It doesn’t simplify the traditional time-intensive efforts of managing and integrating disparate data and addressing performance and tuning of various applications that contend for the same resources.

Many data warehouse appliance vendors offer sophisticated parallel processing environments, query optimization, and specialized storage structures to improve query processing (e.g., columnar-based engines). It’s naïve to think that taking data from an SMP (Symmetric Multi-Processing) relational database and moving it into a parallel processing environment will effectively scale without any adjustments or changes. Moving onto an appliance can be likened to moving into a new house. When you move into a new, larger house, you quickly learn that it’s not as simple as dumping all of your stuff into the new house. The different dimensions of the new rooms cause you realize that some of your old furniture or rugs simple don’t fit. You inevitably have to make adjustments if you want to truly enjoy your new home. The same goes with a data warehouse appliance; it likely has numerous features to support growth and scalability; you have to make adjustments to leverage their benefits.

Register or login for access to this item and much more

All Information Management content is archived after seven days.

Community members receive:
  • All recent and archived articles
  • Conference offers and updates
  • A full menu of enewsletter options
  • Web seminars, white papers, ebooks

Don't have an account? Register for Free Unlimited Access